Genotoxicity of drinking water disinfectants in plant bioassays.
نویسندگان
چکیده
The genotoxicity of two widely used drinking water disinfectants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO(2)), and a new disinfectant, peracetic acid (PAA, CH(3)-CO-COOH), was evaluated in three short-term plant tests: (1) induction of anaphase chromosome aberrations in the root cells of Allium cepa, (2) micronucleus induction in the root cells of Vicia faba, and (3) micronucleus induction in Tradescantia pollen cells. The study was carried out in the laboratory by directly exposing the plants to several concentrations of the disinfectants in redistilled water at unadjusted (acid) and adjusted (neutral) pHs. Both 0.1 and 0.2 mg/l NaClO induced chromosome aberrations in the Allium cepa test at acid pH, but concentrations up to 0.5 mg/l of all the disinfectants were negative at neutral pH. Concentrations ranging from 0.1 to 0.5 mg/l NaClO, ClO(2,) and PAA induced micronuclei in Vicia faba at acid pH, while 1-2 mg/l NaClO and ClO(2) and 0.5-2 mg/l PAA gave positive responses at neutral pH. Most of concentrations of ClO(2) produced positive responses in the Tradescantia micronucleus test. In general, the highest levels of genotoxicity were observed under acid conditions; at acid pH, significant effects were induced by low concentrations of ClO(2) and PAA. Since the test concentrations of disinfectants are typical of those encountered in the biocidal treatment of tap water and similar concentrations are consumed daily by a large number of people, the genotoxicity of these compounds may constitute a significant public health concern.
منابع مشابه
[Genotoxicity of surface water treated with different disinfectants using in situ plant tests].
Disinfection of surface drinking water, in particular water chlorination, produces many by-products with genotoxic and/or carcinogenic activity. The aim of this research was to evaluate the genotoxicity of surface water after treatment with different disinfectants by means of in situ plant genotoxicity assays. The study was carried out in a pilot plant using lake water after sedimentation and f...
متن کاملGround and Surface Water for Drinking: A Laboratory Study on Genotoxicity Using Plant Tests
ABSTRACT Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between hum...
متن کاملTowards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated...
متن کاملBenchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.
Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for ...
متن کاملMutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid.
The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to those found with sodium hypochlorite (NaClO) and chlorine dioxide (ClO2). The Ames test, root anaphase aberration ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental and molecular mutagenesis
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2005